Evidence of percolation related power law behavior in the thermal conductivity of nanotube/polymer composites

B.-W. Kim, S.-H. Park, R. S. Kapadia, and P. R. Bandaru

Citation: Applied Physics Letters 102, 243105 (2013); doi: 10.1063/1.4811497
View online: http://dx.doi.org/10.1063/1.4811497
View Table of Contents: http://scitation.aip.org/content/aip/journal/apl/102/24?ver=pdfcov
Published by the AIP Publishing

Articles you may be interested in

The effect of molecular mobility on electronic transport in carbon nanotube-polymer composites and networks

Influence of carbon nanotube dimensions on the percolation characteristics of carbon nanotube/polymer composites

Thermal stability and electrical conductivity of multiwalled carbon nanotube (MWCNT)/polymethyl methacrylate (PMMA) nanocomposite prepared via the coagulation method

Thermal properties and percolation in carbon nanotube-polymer composites

Conductivity of carbon nanotube polymer composites
Evidence of percolation related power law behavior in the thermal conductivity of nanotube/polymer composites

B.-W. Kim, S.-H. Park, R. S. Kapadia, and P. R. Bandaru
Program in Materials Science, Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, California 92093, USA

(Received 8 April 2013; accepted 4 June 2013; published online 18 June 2013)

A power law relation for the thermal conductivity, indicative of percolation, is reported through measurements on carbon nanotube/polymer composites. Our results contradict earlier assertions and indicate that synthesis methodologies may be adapted to facilitate such behavior. Consistent modeling of the experimentally determined electrical and thermal conductivity anisotropy, in addition to the incorporation of interfacial resistance, was used to understand the underlying mechanisms and variations. © 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4811497]

The large length to diameter aspect ratio of one dimensional nanostructures such as carbon nanotubes (CNTs) or nanowires is expected to enhance both the electrical conductivity (σ) and thermal conductivity (κ) of insulating matrices, e.g., polymers, at relatively low nanostructure filler fractions. Integral to such possible enhancement are (i) the postulated high conductivity of the nanostructures along the length of the wires, due to the reduced scattering space/probability,1,2 and (ii) the aspect that the fillers span/percolate the matrix. Moreover, it would be expected that the anisotropy in the σ and the κ of the fillers would be transferred to the composite and the study of comconmitant effects, together with issues related to thermal percolation, is discussed in this letter. Such investigations would have wide implications to a wide variety of envisaged applications of nanostructure/polymer composites incorporating structural reinforcement,3 electromagnetic interference (EMI) shielding,4,5 electrochemical capacitors,6 etc.

In this study, multi-walled CNTs (of average length 1.6 μm and diameter of 45 nm, with standard deviations of 0.5 μm and 14 nm, respectively, yielding an average length/diameter aspect ratio—A.R., of ~35) in a range of volume fractions (ϕ), i.e., 1–10 vol. % (higher fractions rendered the composites brittle) were dispersed uniformly in a reactive ethylene terpolymer (RET) matrix through a careful blend of solution processing and mixing techniques—as outlined in Figure 1. The uniformity of the dispersion was gauged through (a) considering the nanostructure dispersion, through scanning electron microscopy (SEM) micrographs at various length scales (1 μm–100 μm), as well as through (b) our development and use of a image processing algorithm for comparing the given distribution to a preferred (e.g., uniform) distribution.7 The underlying rationale for the choice of the RET was that ester bond linkages between the carboxyl groups on acid functionalized CNTs and the epoxide groups on the polymer would enable robust bonding, and was verified through Fourier transform infrared (FTIR) spectroscopy.8 Consequently, both functionalized CNTs and RET were solubilized in toluene solvent and blended through ultrasonication. The blend was cast into a glass Petri dish, where the excess solvent was removed by heat treatment in a furnace—further details of the composite synthesis technique have been previously published.9 The obtained composite was removed from the dish and then stacked and subject to a hot press treatment to obtain CNT/RET films/plates of the desired thickness. We report electrical and thermal measurements on representative composite plates of 2 mm thickness.

Four probe measurements were used for the σ (=x/RA), evaluated from the measured electrical resistance R, with x as the contact spacing and A as the cross-sectional area) of the composites with R < 1 GΩ, while for higher resistance composites two-point measurements (using the Agilent B1500A semiconductor device analyzer, with triaxial probes) were employed. The composites were subject to mild oxygen plasma treatment to remove surface contamination and subsequently, 5–10 nm of Ti followed by 100 nm of Au were sputtered on for electrical contacts. For measurements of the in-plane conductivity (σ∥), the contacts were on the either side of the composite, while measurements of the cross-plane (through thickness) conductivity (σ⊥) used contacts deposited on the top and bottom of the composite—see Figure 1(d). Self-heating was negligible due to the low applied power.

The measured σ∥ and σ⊥ as a function of the CNT concentration is plotted in Figure 2. The variation of both σ∥ and σ⊥ could be fitted to power law relations of the form10

![Image](https://example.com/image1)

FIG. 1. (a) Blended CNT/polymer composite material was diced and (b) subject to repeated compressive stress. (c) The compressed sheet comprises CNTs preferentially aligned in the plane of the sheet. (d) In-plane (top) and cross-plane (bottom) electrical and thermal conductivity measurements were carried out to ascertain anisotropy and percolation.
This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP: 137.110.36.10 On: Mon, 26 Jan 2015 04:43:21

This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP: 137.110.36.10 On: Mon, 26 Jan 2015 04:43:21

FIG. 2. The variation of the measured electrical conductivity with added CNT filler concentration depicted for the in plane (σ_\parallel) and cross plane (σ_\perp) configurations. The anisotropy ratio, i.e., $\sigma_\parallel/\sigma_\perp$, is indicated on the right hand axis. The * indicates the results of the Straley model relating the product of the electrical resistances of the matrix and the filler to the percolation threshold.

$$\sigma_{DC} \sim \left\{ \begin{array}{ll} (\phi_c - \phi)^{-t}, & \phi < \phi_c, \\ (\phi - \phi_c)^{-t}, & \phi > \phi_c, \end{array} \right.$$ \hspace{1cm} (1)

where ϕ_c is the threshold volume fraction for electrical percolation, while s and t are critical exponents. We also estimated, the threshold from excluded volume percolation theory,11,12 for CNTs with an aspect ratio (A.R.) of ~ 35, using

$$\phi_c(A.R.) = \frac{C}{\pi^2 + 2\pi(A.R.) + \pi^2(A.R.)^2} \left[\frac{\pi^2}{6} + \frac{\pi}{4} (A.R.) \right].$$ \hspace{1cm} (2)

C is a constant in the range of 1.4 (for thin rods) to 2.8 (for spherical objects).13 Using $C \sim 1.4$, for the nanotubes, a ϕ_c of ~ 2.2 vol. % was estimated. While the fitted ϕ_c was ~ 2.3 vol. % for the σ_\parallel change, a value of ~ 3.3 vol. % was noted for the σ_\perp variation. Moreover, there was a more gradual ($t \sim 4.2$ for σ_\perp compared with a t value ~ 5.7 for the σ_\parallel variation)14 and smaller net increase. The differing values of ϕ_c for the σ_\parallel and σ_\perp indicate anisotropy and the $\sigma_\parallel/\sigma_\perp$ ratio has been indicated in Figure 2, e.g., the larger value for σ_\perp could be tentatively understood from the greater deviation from isotropic arrangement15,16 of the nanotubes.

Concomitantly, the cross plane (κ_\perp) and in-plane (κ_\parallel) thermal conductivity values were estimated through a steady state method and the 3ω methodology,17 respectively. For κ_\perp, the experimental apparatus was modeled and constructed in accordance with ASTM (American Society for Testing and Materials) standards E1225 and D 5470. The accuracy of measurement was estimated to be $\sim 3\%$ through comparison with standards. For the κ_\parallel measurements, employing the 3ω technique, Ti/Au metal lines (70 μm wide and 10 mm long) which serve as both heater and thermometer were deposited on the composites, with the length scales chosen so as to approximate a narrow line heat source18,19 (with a ratio of the sample thickness to the metal line width of ~ 30). Using a lock-in amplifier (Stanford Research Systems: SR 830) and a Wheatstone bridge setup, alternating current, $I(\omega)$, of angular frequency ω (with frequencies (f) in the range of 0.1 Hz-100 Hz), passed through the metal lines induces resistance oscillations at 2ω: $R(2\omega)$, due to Joule heating ($\sim fR$), from which the thermal conductivity can be deduced from the third harmonic voltage, $V(3\omega) (=I(\omega)R(2\omega))$. The temperature change (ΔT) was deduced using the relation $\Delta T = \frac{2V(3\omega)}{3f(\omega)}$, where x is the measured temperature coefficient of resistance of the metal line. Assuming an adiabatic boundary condition at the bottom of the composite (which is valid for a thermal penetration depth smaller than 2 mm (Ref. 19)), the estimated ΔT could be then related to the thermal conductivity product, $\kappa_\parallel\kappa_\perp$, obtained through

$$\Delta T \approx \frac{P}{2\pi \sqrt{\kappa_\parallel/\kappa_\perp}} [-\ln(\omega) + G].$$ \hspace{1cm} (3)

In Eq. (3), P is the electrical power per unit length of the heater and G is a constant. Combining the steady-state and the 3ω measurements, the individual values of κ_\parallel and κ_\perp were computed. Generally, the CNTs are covered by the polymer and the surface of the composites is not electrically conducting. We ensure that the sample and the metal lines are electrically isolated/mutually insulated at all CNT concentrations through monitoring the electrical capacitance (for possible shorting) as well as through the variation of the temperature change/oscillation (ΔT) with frequency (f). While insulated samples exhibit a well-predicted variation, non-insulated samples (e.g., a bare Si substrate) exhibit irregular behavior.

The measured κ_\perp and the estimated κ_\parallel are then plotted as a function of the CNT concentration in Figure 3 along with the $\kappa_\parallel/\kappa_\perp$ anisotropy ratio. While a fairly linear change was noted for κ_\perp, a percolation like behavior, similar to the variation in σ, was observed in κ_\parallel. We then attempted to fit the κ_\parallel variation using expressions of the form

$$\kappa_\parallel \sim \left\{ \begin{array}{ll} (\phi_{c,k} - \phi)^{-p}, & \phi < \phi_{c,k}, \\ (\phi - \phi_{c,k})^q, & \phi > \phi_{c,k}, \end{array} \right.$$ \hspace{1cm} (4)

where, $\phi_{c,k}$ is now the threshold volume fraction for the onset of thermal percolation, and p and q are critical exponents in

FIG. 3. The variation of the measured thermal conductivity with added CNT filler concentration depicted for the in plane (κ_\parallel) and cross plane (κ_\perp) configurations. The anisotropy ratio, i.e., $\kappa_\parallel/\kappa_\perp$ is indicated on the right hand axis. The * indicates the results of the Straley model relating the product of the thermal resistances of the matrix and the filler to the percolation threshold.
the respective regimes. We obtained, experimentally, a $\phi_{c,J} \sim 2.2$ vol.%, close to the theoretically expected value, with $p \sim 0.2$ and $q \sim 0.1$. The value of the exponents in the power laws depends on the particular type of conductivity, i.e., electrical or thermal as well as on the ratio of the respective conductivities of the constituent phases.21

The concomitant larger variation in the increase of the σ (ten-twelve orders of magnitude for σ_\perp and σ_\parallel) of the CNT/polymer composites compared to the increase of the κ (50% and 400% for κ_\perp and κ_\parallel, respectively) may be attributed to the intrinsically greater range in electrical conductivity. In the former case, one has to consider the much lower electrical resistance of the CNTs compared to the polymers, while there is generally a much smaller variation in κ between disparate materials. The substantial enhancement in κ_\parallel compared to κ_\perp is also to be noted. We ascribe the κ_\parallel increase to the effects of percolation. Further evidence was obtained through adapting a Straley model22 (used for determining the critical exponents for the conductivity of random resistor lattices), where the filler (R_f) and matrix (R_m) could be represented as thermal resistors. Through such modeling, the effective thermal conductivity at the percolation threshold fraction could be related to $R_f^{\perp}R_m^{-\perp}$, where $u = p - q$ and the estimated value has been indicated through a * in Figure 3. The equivalent σ values, where the filler and the matrix were represented as electrical resistors, have been indicated through the * symbol in Figure 2.

We model such connectivity effects encompassing both electrical and thermal conductivity, through a two-dimensional model considering the total number of percolating networks in the in-plane and cross-plane directions, contributing to an equivalent resistance, R_{\parallel} and R_{\perp}, respectively. Following the schematic in Figure 4, we assume that each network is comprised of a series of nanotubes, and many such networks yield a nanostructure contributed total resistance in the in-plane direction ($R_{CNT,\parallel}$). Conduction would occur simultaneously through the polymer matrix of resistance $= R_{M,\parallel}$. If the resistance of a single nanotube, $R_c = \frac{l}{A_c\sigma_c}$, with l being the average nanotube length, A_c the cross-sectional area, and σ_c the conductivity (which should now be interpreted as an electrical: σ or thermal conductivity: κ) with an interfacial resistance, R_I (in units of Ωm^2), then $R_{CNT,\parallel}$ would be

$$\frac{1}{R_{CNT,\parallel}} = \frac{1}{R_c + \frac{R_c\cos(\theta)}{A_c} \frac{L_\parallel}{l\cos(\theta)}}. \quad (5)$$

θ is an average orientation angle between the CNT longitudinal axis and the horizontal, L_\parallel is the length of the composite sample, and N_c indicates the total number of CNTs as estimated through the incorporated volume fraction (ϕ). The second multiplicative term on the right is a measure of the number of horizontal networks. The $R_{M,\parallel} = \frac{1}{A_c(1-\phi)\sigma_m}$, where A_c is the composite cross-sectional area and σ_m is the matrix (polymer) conductivity. The net in-plane conductivity (σ_\parallel) constituted of $R_{CNT,\parallel}$ and $R_{M,\parallel}$ would be

$$\sigma_\parallel = \left(1 - \frac{R_c}{\sigma_c}\frac{\cos(\theta)}{l}\right) + (1 - \phi)\sigma_m. \quad (6)$$

Through similar methodology, the net cross-plane conductivity (σ_\perp) constituted of $R_{CNT,\perp}$ and $R_{M,\perp}$ would be

$$\sigma_\perp = \left(1 + \frac{R_c}{\sigma_c}\frac{\cos(\theta)}{l}\right) + (1 - \phi)\sigma_m. \quad (7)$$

Assuming a range of θ and a constraint on the anisotropy ratio between the in-plane and the cross-plane conductivity, i.e., $\frac{\sigma_\parallel}{\sigma_\perp} = 1$, as $\theta \rightarrow \pi/2$, we derive:

$$\frac{\sigma_\parallel}{\sigma_\perp} = \frac{\theta_0 + \sin(\theta_0)\cos(\theta)_b + \frac{1 - \phi}{\phi} \left(1 + \frac{2R_c\sin(\theta_0)}{l}\right)\sigma_m}{\theta_b - \sin(\theta_b)\cos(\theta)_b + \frac{1 - \phi}{\phi} \left(1 + \frac{2R_c\sin(\theta_b)}{l}\right)\sigma_m}. \quad (8)$$

In the case of electrical conductivity, due to the measured small σ_m ($\sim 3 \times 10^{-12} \Omega^{-1}\text{m}^{-1}$), we could ignore the expressions on the far right hand side of the numerator and denominator, whence we obtain

$$\frac{\sigma_\parallel}{\sigma_\perp} \approx \frac{\theta_0 + \sin(\theta_0) + \cos(\theta_0)}{\theta_b - \sin(\theta_b) + \cos(\theta_b)}. \quad (9)$$

Inserting the corresponding σ_\parallel and σ_\perp from Figure 2, at $\phi > \phi_f$ (i.e., at 3.3 vol.%, 4.8 vol.%, and 10 vol.%), we find the θ_0 values to be 4.6°, 8.5°, and 19°, respectively. These values were then used for interpreting the thermal conductivity variation vis-à-vis the percolation like behavior of κ_\parallel.

However, for modeling the thermal conductivity anisotropy, $\frac{\kappa_{\parallel}}{\kappa_{\perp}}$, the matrix conductivity, κ_m ($\sim 0.3 \text{W/mK}$) cannot be neglected, and terms involving the thermal interfacial resistance (R^{th}_I in units of $\text{m}^2\text{K/W}$) would remain

$$\frac{\kappa_{\parallel}}{\kappa_{\perp}} = \frac{\theta_0 + \sin(\theta_0)\cos(\theta)_b + \frac{1 - \phi}{\phi} \left(1 + \frac{2R_c\sin(\theta_0)}{l}\right)\kappa_m}{\theta_b - \sin(\theta_b)\cos(\theta)_b + \frac{1 - \phi}{\phi} \left(1 + \frac{2R_c\sin(\theta_b)}{l}\right)\kappa_m}. \quad (10)$$
Along with the corresponding k_\parallel and k_\perp from Figure 3, the θ_b values obtained previously were inserted into Eq. (10), to consistently estimate a k_c (\sim240 W/mK) and an R^{th}_b (\sim7 \times 10^{-8} m2K/W). Such estimates are in excellent accord with previous evaluations of nanotube interfacial thermal resistance, and further indicate a significant modulation of the thermal conductivity of nanostreams, when they are dispersed into a matrix. While previous reports indicated a lack of percolation due to (i) the relatively low thermal conductivity contrast and (ii) the interfacial resistance between the conducting nanostructure and the matrix (polymer), we have then seen that percolation behavior is indeed possible. In such previous studies, e.g., it was concluded based on theoretical analysis (based on the finite element method: FEM and molecular dynamics) that the low thermal conductivity contrast (of less than 104) between the matrix and the filler precludes percolation. A linear variation of the thermal conductivity increase. Indeed, a greater degree of isotropy would imply a lower percolation threshold.

We have then shown that it is feasible to adapt a synthesis methodology, e.g., using stacking of nanotube/polymer composite sheets, facilitating percolation behavior. We surmise that an increased nanotube aspect ratio, enhanced from that presented in this paper, would yield a corresponding exponential increase of the thermal conductivity.

In summary, we have shown, through detailed experiments and modeling, evidence of anisotropy in both the electrical and thermal conductivity in nanotube/polymer composites. A power law relation for the thermal conductivity has been indicated, indicative of percolation-like behavior, with implications for tunable thermal conductivity and thermal switching.

The support from the National Science Foundation (Grant Nos. ECS 0643761 and CMMI 1246800) is acknowledged. Interactions and discussions with S. Pfeifer (General Atomics) are deeply appreciated.