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We seek to provide a metric for quantifying the degree of dispersion of nanostructures, such as carbon nanotubes in polymeric and
other matrices, motivated by the technological importance of nanostructure-based composites. Our proposed measure of dispersion
uses a quadrat-based sampling algorithm and a metric d(P||Q), to correlate randomness to the dispersion. This allows a quantitative
comparison of the given distribution (say, P) to a preferred distribution or pattern (say, Q). We provide examples from our own
studies and those from the literature on the application of the metric.

Keywords: Nanostructures, Polymer-Matrix Composites, Statistical Properties/Methods, Surface Analysis

1. Introduction It is often necessary to quantita-
tively measure the degree of dispersion of micro-
scopic and nanoscopic entities in a macroscopic polymer
matrix. As an example for illustrating the applicabil-
ity of such a notion, composites constituted of car-
bon nanotubes (CNTs) placed in a polymer [1,2] have
been widely proposed for electromagnetic interference
shielding,[3–5] in high sensitivity infrared sensors,[6]
structural applications,[7,8] etc. It has been widely
accepted that the composite properties would be opti-
mal when the CNTs are uniformly dispersed within the
polymer matrix.[9] More generally, agglomeration of
nanostructures/CNTs—in the bulk, surfaces/films, or
on fibers/fiber surfaces—is undesirable as it promotes
non-uniformity in the measured properties, whereby the
characteristics would be a function of which part of
the sample was measured. The uniform dispersal and
bonding of CNTs in a polymer may confer unique
properties to the composite, e.g. through the postu-
lated formation of an interphase region,[10] enhanced
charge carrier scattering,[11] etc. Similar considerations
also apply to the dispersion of other structures such as
nanoparticles,[12] e.g. used in polymer composite foams
[13] where aggregation and bundling can lead to poor
interfacial bonding of the structures with the polymer
matrix. Bundling is not unexpected due to the strong

∗Corresponding author. Email: pbandaru@ucsd.edu

van der Waals bonding prevalent in such structures. This
in turn can cause variable and diminished properties in
the composite. While single-walled CNT (SWCNT) and
multi-walled CNT (MWCNT)-based composites have
been reported [14–16] to have enhanced elastic modu-
lus and ultimate tensile strength, it has been frequently
seen that beyond a certain loading, fillers can be delete-
rious (e.g. at ∼0.6 vol% in phenol/SWCNT composites
[17] or polypropylene/SWCNT composites [16]), pre-
sumably due to bundling of the CNTs. In our own studies,
we have seen a decrease in the work of fracture of a
SWCNT-RET (reactive ethylene terpolymer) composite
at ∼0.1 vol% loading fraction of the nanotubes.[8]

It was also proposed that the nanostructure surfaces
and interfaces could be functionalized through the use
of suitable coupling agents [18,19] and made to interact
more homogeneously with the polymer matrix. However,
it is practically difficult to uniformly disperse nanostruc-
tures as the very same characteristics that confer their
unique properties (e.g. high specific surface area) also
encourage mutual attraction. It has also been shown [20]
that commonly used homogenization techniques such
as ultra-sonication/blending could destructively reduce
CNT length to diameter aspect ratio. While maintaining
uniformity in dispersion is difficult and is presently an
active research topic, it would nevertheless be pertinent

© 2014 The Author(s). Published by Taylor & Francis.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The moral rights of the
named author(s) have been asserted.

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
C

al
if

or
ni

a,
 S

an
 D

ie
go

] 
at

 0
9:

43
 2

5 
Ja

nu
ar

y 
20

15
 

mailto:pbandaru@ucsd.edu
http://creativecommons.org/licenses/by/3.0


Mater. Res. Lett., 2014

to understand quantitatively or define more definitively
the degree of dispersion of nanostructures, such as CNTs,
within a polymer. This paper sets out to provide such a
metric suitable for quantifying the dispersion. The merit
arises from the strong theoretical foundations used, where
well-established information theory principles, invoking
the entropy, can be adapted to understand and correlate
randomness in the dispersion thereby allowing a compar-
ison of the given distribution to a preferred distribution or
pattern. We also suggest that our technique can be used
for describing the dispersal of any minority phase within
a majority phase.

At the very outset, the visual examination of a
micrograph is inadequate to gauge the uniformity of a par-
ticular dispersion of the nano-/micro-structures within a
matrix, e.g. the presence/absence of agglomerates can
both indicate similar dispersion uniformity. A variety of
qualitative, semi-quantitative and quantitative method-
ologies have then been used for the quantification of the
dispersion. We first discuss ASTM (American Society
for Testing and Materials) standard (D2663),[21] along
with the three test methods invoked for the dispersion
of carbon black type fillers in polymeric matrices. One
version (Test Method A) incorporates visual inspection
or linear intercept methods,[22] where the dispersion
level is compared with a series of five photographic
standards/comparison charts [23] and then rated numeri-
cally from 1 (poor dispersion) to 5 (very good dispersion).
Alternately, in a more quantitative methodology (Test
method B), the total cross-sectional area of the additive
agglomerates with a spatial extent of greater than 5 μm is
counted and subtracted from the known added content of
the additive. The percentage of additives below the 5 μm
limit is given as a measure of the dispersion, as follows:
>97%—‘high’ dispersion, 92–97%—‘intermediate’ dis-
persion and <92%—‘low’ dispersion. In another semi-
quantitative method (Test Method C), the cut surface of
a certain sample is traced with a stylus and the amount
of roughness caused by the agglomerates is translated to
measure the dispersion.

Alternately, fundamental statistical measures could
also be used for a dispersion index. For example, the
average number (/mean) number of particles and the
deviation from the mean (i.e. through the variance as in
the χ2 distribution-based tests) in a given unit could be
considered. However, such measures may not be valid
for low filler content and often assume an underlying
Gaussian distribution. While a better measure could be
obtained through considering a higher order moment
about the mean, i.e. through measuring the skewness,
which may be in the range of zero (for well-dispersed
and uniformly distributed particles) to infinity (for large
aggregates) there is an implicit reference to an expected
mean number of particles per unit/quadrat which is a
priori unknown. An alternate measure (valid for 0–20%
CNT loading in polymer matrices) considering both the

spread of the additive (considering a dIndex, varying
between 0 and 0.5) as well as the size of the additive
agglomerate (through a sIndex, varying between 0 and
0.5) based on a quadrat [23] methodology was recently
proposed.[24] The overall dispersion index was consid-
ered to be the arithmetic average of the two indices and
varied between zero (maximally ill dispersed) and one
(maximally well dispersed). However, the assignment of
a range between zero and one, as well as considering a
‘maximum particle agglomerate size’ is still arbitrary and
not well founded. Moreover, the notions of a range and
minimal or maximal dispersion are not well defined and
clearly quantifiable.

In much of the literature, the measurement of dis-
persion in a particular micrograph area is quantified by
dividing the net area into cells (/quadrats) of equal area.
While there is a basic degree of uncertainty in choosing
the optimal size of the quadrat (as this choice determines
the dispersion index number), it still seems to be the most
meaningful basis. Alternate measures, e.g. the free-space
length, Lf ,[25] which correlates to the ‘characteristic size
of the unreinforced polymer domains’ and defined as the
‘width of the largest randomly placed square for which
the most probable number of intersecting particles is zero’
are still equivalent to measuring the mean length of the
largest quadrat square likely to contain zero particles, and
have a potential drawback in that a large Lf could be indi-
cated for low volume fraction nanostructure fillers. The
Morisita index,[26] which was also proposed as an alter-
nate measure relatively independent of the quadrat size,
compares images with similar objects and was shown to
be inadequate for nanocomposites with similar degrees
of filler mixing.[22]

The methods discussed above are based on assump-
tions of underlying statistical distributions (typically
assumed to be normal/Gaussian), and inherently lack an
objective theoretical foundation, e.g. the relevant equa-
tions are not of the logarithmic form. Such a requirement
is mandated from information theory,[27] which is pro-
posed in this paper as an attribute to be used to relate
the degree of uniformity in dispersion to the probabil-
ity of locating CNTs.[28] The specific advantages of our
approach are evident in that we were able to (a) suc-
cessfully categorize images and image distributions that
could not be characterized by other indices, such as the
Morisita methodology,[22] (b) produce a single metric,
for quantifying the dispersion, and (c) could compare a
given image to another image or a given/preferred dis-
tribution. The drawbacks may be related, as discussed
earlier, to the issue of obtaining an optimal quadrat
size, choosing between accuracy and computational time.
An optimal quadrat square should indeed be chosen to
adequately characterize the nanostructure distribution,
i.e. larger quadrats can make a clustered distribution look
uniform since such quadrats tend to have nearly the same
number of nanostructures/CNTs, while smaller quadrats
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may not contain any CNTs—also see discussion in
Section 3.

2. Principles of the Approach A suitable dispersion
metric should enable a comparison with either an ide-
alized dispersion pattern or alternatively with a desired
probability distribution (e.g. uniform, Poisson distribu-
tion, etc.). From a more quantitative perspective, one
example of a well-defined metric involves the use of
the quadrat approach [22,23] which can be applied at
any nanostructure fraction. In such a method, for exam-
ple, the CNTs are located from a visual micrograph
obtained, e.g. through transmission/scanning electron
microscopy (TEM/SEM)-based images of a composite
cross-section. The image is then subdivided into several
squares/quadrats and the number of pixels correspond-
ing to the CNTs within each quadrat counted. A perfectly
uniform arrangement of the dispersants within the matrix
would then exhibit an equal number of centers in each
quadrat, so that deviations may be gauged, e.g. by cal-
culating the relative entropy or the distance between the
distributions.

A measure of the average randomness (/entropy)
of a given composite constituted from the nanostruc-
ture (filler)—polymer (matrix) distribution is given by
the average of the possible arrangements of filler (f ) and
matrix (m) entities (with f + m = 100% or unity) and is
proportional to the total number of their arrangements,
i.e. f !m!/(f + m)!, which can be simplified through the
Stirling formula to f ln(f ) + m ln(m), where ln is the nat-
ural logarithm. The entropy of the filler-matrix ensemble
for a given distribution, say P, could then be defined
through [27]

H (P) = fP ln(fP) + mP ln(mP). (1)

Comparing such a distribution ‘P’ to another given
nanostructure-polymer dispersion, say ‘Q’, whose
entropy is given by H (Q) = fQ ln(fQ) + mQ ln(mQ), we
can derive a comparison function to denote the rela-
tive entropy between these two distributions, D(P||Q),
through [27,29]

D(P||Q) = H (P) − H (Q). (2)

This interpretation of the relative entropy is then illus-
trated with respect to how a particular nanostructure
distribution, say corresponding to ‘P’, differs from a
preferred/standard distribution corresponding to ‘Q’, e.g.
a Poisson or uniform (square, hexagonal lattice, etc.)
distribution.[24,25] In other words, D(P||Q) measures
the ‘inefficiency of assuming that the distribution is Q,
when the true distribution is P’.[27,29] A corollary of
the previous statement is that when a particular dis-
tribution ‘P’ approaches the preferred distribution ‘Q’,
the relative entropy should approach zero (which is the

logarithm of 1). However, D(P||Q) is not a complete met-
ric since the equality D(P||Q) = D(Q||P) usually does
not hold.[23] We postulate an average, i.e. d(P||Q) as
follows [26]:

d(P||Q) ≡ 1
2
[D(P||Q) + D(Q||P)] ≥ 0. (3)

It is apparent that d(P||Q) = d(Q||P) and when the
distributions are equivalent, i.e. d(Q||Q) = 0.

3. Implementation of the d(P||Q) Metric to Gauge
the Uniformity of a Given CNT Distribution Within
a Polymer Matrix We will next outline the methodol-
ogy for utilizing the above principles in quantifying the
deviation of a given CNT distribution in a polymer from
a standard distribution. Initially, an algorithm (imple-
mented in MATLAB™) was used to generate 10,000
randomly positioned quadrats, imposed on a micrograph.
Although the algorithm could have simply placed a
quadrat centered at each pixel within the image, the use
of such a random sample of quadrats saves computational
time when evaluating larger micrographs, while provid-
ing a satisfactory representation of each image. Also, this
allows the direct comparison between differently sized
micrographs since the conventional approach of using a
fixed quadrat grid would require a different number of
quadrats for differently sized micrographs. Additionally,
a fixed quadrat grid can result in significantly differ-
ent dispersion metrics depending on where the grid is
superimposed over the micrograph.[23,30] We note that
a sufficiently large quadrat square should be chosen to
adequately characterize the actual CNT distribution, e.g.
if no CNT lies within a quadrat, the quadrat size should
be increased until the expanded quadrat contains at least
one pixel from a CNT. This is essential for Equations (2)
and (3) to be well defined.

It is reiterated that the choice of quadrat size is very
important in gauging the dispersion and producing a reli-
able d-metric. An optimal quadrat square should indeed
be chosen to adequately characterize the nanostructure
distribution, i.e. larger quadrats can make a clustered dis-
tribution look uniform since such quadrats tend to have
nearly the same number of nanostructures/CNTs, while
smaller quadrats may not contain any CNTs.

Consequently, while there is no straightforward way
to determine the optimal quadrat size and shape, several
empirical rules have been previously suggested, e.g. that
approximately twice the mean area of a particle is suit-
able as the square quadrat size [31] should be used. For
our study, an initial quadrat area of 45 pixels × 45 pixels,
corresponding to ∼3.5 times the average particle diam-
eter, related to the midpoint of a range of initial quadrat
sizes, that gave acceptable and reproducible dispersion
measurement trends, was chosen. We could modify this
initial quadrat size slightly without changing the relative
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ranking of dispersions in our study. The general proce-
dure, which could be employed for gauging the d-metric,
was as follows:

(A) Given a particular image, the numerical value of
the degree of darkness of a pixel (which is the
smallest element of an image) is identified with
8-bit resolution—range from 0 (black) to 255
(white). While our algorithm can also be adapted
for colorized images, by assigning bin numbers
to different colors, we focus on gray scale images
to reduce the complexity.

(B) The pixel darkness values are obtained for
the nanostructure (e.g. CNT) and the polymer
through the SEM/TEM micrographs using the
ImageJ® application.

(C) The pixel value threshold for distinguishing the
nanostructure from the contrasting polymer back-
ground is determined from an examination of the
micrographs. In most cases, a 150-pixel dark-
ness value could distinguish CNTs from the
polymer background. It is to be expected that
other images corresponding to those produced
by different equipment/imaging conditions may
require a different threshold.

(D) The initial length of each quadrat square (in terms
of the number of pixels) should then be set
to correspond to at least (twice) the minimum
nanostructure size, for a given magnification. As
previously discussed, a small quadrat size (cor-
responding to a large number of quadrats on the
micrograph as well as many empty quadrats)
result in excessive computation time while a
large quadrat size may yield inaccurate results,
e.g. they may make a clustered distribution look
uniform.

(E) On another note, the quadrat size should be suffi-
ciently large to capture the nanostructures/CNTs
that vary in diameter either within an image or
when the magnification changes without being
so large as to mask clusters of inclusions. For
instance, a 30 × 30 pixel quadrat has a greater
than 99.9% chance of containing at least one
CNT pixel with perfectly distributed CNTs in
a 1 vol% CNT-polymer constituted composite.
Consequently, such an initial quadrat size should
work well with imperfectly distributed CNTs
across a range of loadings. Periodic boundary
conditions should be applied to avoid preferential
sampling near the image boundaries.

As in the proper reporting of any scientific mea-
sure, the dispersion uniformity must be gauged over a
number of micrographs (of samples prepared under nom-
inally identical conditions) under consistent conditions
(e.g. at a given value of magnification, reported threshold

value, etc.). The utilized MATLAB® m-files comparing
an (i) image to a distribution and (ii) two mutual images
have been appended to the Supplementary Information.

Our program was then configured to yield the area
fraction of the CNTs within each of the 10,000 quadrats.
The CNT distribution probabilities, pi—related to proba-
bility of finding CNTs within the ith quadrat, were found
through using the area ai (in units of pixels) of the CNTs
within the ith quadrat of area Ai, through

pi = ai/Ai
∑n

i=1 ai/Ai
. (4)

The denominator normalizes the probability over the total
number (n) of quadrats, so that

∑n
i=1 pi = 1. It is to be

noted that the pi are related to the filler (i.e. pi = fi,P)

or the matrix (i.e. pi = mi,P) in a given distribution, P.
Equation (4) can also be used as an estimator of a proba-
bility function for deterministic patterns, e.g. (i) pi = 1/n,
for a uniform distribution. However, of the five types of
two-dimensional Bravais lattices, the hexagonal lattice
could be considered the most well-dispersed since it has
the largest number of equidistant nearest neighbors.[32]
Consequently, for the purpose of a preferred/standard
distribution a hexagonal lattice (HEX) was chosen. It
is to be emphasized that our proposed approach and
algorithm can be applied to any distribution, and we chose
the HEX distribution only for illustrative purpose. The
Uniform and the HEX distributions are similar but not
identical ways to characterize dispersion. The Uniform
distribution, for example, expects the same number of
particle pixels circumscribed within each quadrat and that
it would always be unnecessary to expand a quadrat to
encompass at least one pixel. On the other hand, quadrats
superimposed in a random fashion over HEX will not
always contain the same number of particle pixels and a
quadrat placed over an empty zone in HEX will require
enlargement to encapsulate at least one particle pixel.
Generally, a user is free to select an ideal distribution
according to their needs and/or applications. For exam-
ple, one user may have the flexibility to call Figure 2(a)
‘ideal’ for their application. Another user may prefer a
HEX pattern. A third may want a UNIFORM distribution
or perhaps a more stratified pattern (say, for a waveg-
uide). Our algorithm lets the user specify their version of
‘ideal’ for their particular application. Although there can
be different versions of what constitutes ideal, we view
this flexibility as a desirable attribute of the algorithm.

It may also be desirable to change the density of
the chosen/preferred pattern to represent a higher or
lower volume fraction of the nanostructure dispersion.
We selected an area fraction and particle diameter in HEX
to illustrate a reasonable example of an ‘ideal’ image suit-
able for comparison in a study. However, the user is free
to account for particle loading, magnification and particle
diameter in the selection of the ideal image or distribution,
e.g. by using larger or smaller diameter particles (and/or
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with more or less area fraction) to represent the volume
(area) fraction of inclusions of a particular diameter in
a nanocomposite. Our algorithm, also allows the user to
specify an equal number of particles in each quadrat as
an ideal—instead of using an idealized pattern. This may
be desired since deterministic patterns such as HEX may
exhibit a picture perfect level of dispersion that may not
needed for some applications. In such ways, images of
nanostructures dispersed in polymers can be compared
with a preferred point pattern/lattice, using Equation (4)
as an estimator of the probability function. The ai/Ai may
also be considered a reasonable estimator of the CNT
volume fraction.

For calculating the ai, we had to consider care-
fully from digital images/micrographs the pixels that
do represent CNTs. Generally, digital images are cre-
ated by a quantization and sampling process, which
mathematically represents an image through a matrix
of real numbers. Each matrix element corresponds to
a pixel which is the smallest element of the image
and is identified by its position within the image and
a numerical value representing the degree of darkness
of that pixel.[33] In our processed images, the numer-
ical value (with 8-bit resolution) could range from 0
(black) to 255 (white). We measured CNT and polymer

pixel values within our micrographs using the ImageJ
application (http://rsbweb.nih.gov/ij/) and determined,
for our case (Figure 1) that a 150 pixel value thresh-
old could distinguish CNTs from the contrasting polymer
background. Both MATLAB™ and ImageJ recognize
pixels by their numerical value, and it is to be expected
that other images corresponding to those produced by
different equipment/imaging conditions may require a
different threshold. The initial length of each quadrat
square was then set to be 45 pixels which is approximately
3.5 times the average CNT diameter at 1250× magnifi-
cation (the exact conversion between pixels and CNT
diameter would vary with the magnification [22,34]).
Ten measurements of d(P||Q), with respect to the HEX
pattern, were averaged for any particular image/pattern
under test to estimate the population average and lower
the standard error estimate (as indicated in Table 1).

We then applied the above methodology to test the
proposed dispersion metric, to both our own pattern
images of CNTs dispersed in an epoxy polymer (RET)
as well as those published in the literature.[22,25] The
RET (Elvaloy 4170) was constituted of (1) polyethylene,
(2) a polar methyl-methacrylate group and (3) epox-
ide functional groups. While (1) and (2) contribute
to mechanical elastomeric characteristics and corrosion

Figure 1. The uniformity of dispersion of carbon nanotubes (CNTs) dispersed in a RET polymer matrix, decreases from the top
to the bottom in these SEM micrographs and a quantitative measure can be obtained through a d-metric analysis—Table 1. Left
column: Increasingly poor dispersion of unfunctionalized CNTs (increasing from the top, UNF-A to the bottom, i.e. UNF-D). Center
column: Increasingly poor dispersion of coiled CNTs (increasing from the top, COIL-A to the bottom, i.e. COIL-D). Right column:
Increasingly poor dispersion of MWCNTs (increasing from the top, MWNT-A to the bottom, i.e. MWNT-D).
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Table 1. The d-metric for the images in Figure 1 indicates a quantification of the degree/uniformity of dispersion.

〈d(HEX||Pattern)〉 〈d(HEX||Pattern)〉 〈d(HEX||Pattern)〉
〈d(HEX||UNF-A)〉 = 5.805(0.007) 〈d(HEX||COIL-A)〉 = 0.858(0.004) 〈d(HEX||MWNT-A)〉 = 0.275(0.001)
〈d(HEX||UNF-B)〉 = 5.815(0.009) 〈d(HEX||COIL-B)〉 = 1.259(0.011) 〈d(HEX||MWNT-B)〉 = 0.623(0.004)
〈d(HEX||UNF-C)〉 = 6.092(0.011) 〈d(HEX||COIL-C)〉 = 1.721(0.015) 〈d(HEX||MWNT-C)〉 = 3.084(0.012)
〈d(HEX||UNF-D)〉 = 6.577(0.009) 〈d(HEX||COIL-D)〉 = 2.831(0.007) 〈d(HEX||MWNT-D)〉 = 4.690(0.007)

Note: The numbers in bold indicate the d-metric values, the standard deviation from 10 measurements is indicated in the
parenthesis.

resistance and are critical to the utility of RET as a
hot-melt adhesive and coating, the epoxide group has
high reactivity [19] and is amenable for effective anchor-
ing of the constituent ring bonds with functional groups
(e.g. −OH, −COOH, −NH2, etc.) on the CNTs.[35]
As the functional groups are associated with defects on
the CNTs and are randomly dispersed, isotropic bonding
of the nanotubes with the polymer matrix was implied
and expected to yield relatively uniform CNT disper-
sion. Both pristine and –COOH functionalized SWCNTs
(average diameter of 1.5 nm, length range ∼5–20 μm),
MWCNTs (average diameter of 140 nm, length range∼5-
9 μm), as well as coiled CNTs [36,37] were used. Further
details of the dispersal procedure and structural, elec-
trical, and electromagnetic characterization have been
reported previously.[3]

Generally, considerable clumping reflective of CNT
agglomeration was observed when unfunctionalized
CNTs (to the left of Figure 1) were mixed into the
polymer. We then observed that the general strategy of
employing mutual chemical reaction between functional
groups on the CNT and the polymer through covalent
functionalization of the nanotube surface [38] resulted
in a relatively more uniform dispersion of SWCNTs in
the polymer over a wide range of nanotube volume frac-
tions, i.e. from 0.2 to 4.5 vol% (for functionalized coiled
nanotubes and multi-walled nanotubes, in the center and
to the right of Figure 1, respectively). It was noted that
TEM images have poor contrast between SWCNTs and
the surrounding matrix and the SEM images have ade-
quate subject contrast between the inclusions and the
surroundings to demonstrate the efficacy of our dispersion
algorithm.

We now characterize the extent of uniformity in
the CNT dispersed RET polymer through the d(P||Q)

metric, as applied to SEM images of the distribution of
unfunctionalized and functionalized CNTs in the poly-
mer (Figure 1). The images in Figure 1 represent the SEM
micrographs of fracture surfaces of the samples. Contrast
was used to distinguish the CNTs (which are predomi-
nantly metallic) from the background roughness. More
specifically, we measured CNT and polymer pixel values
within our micrographs using the ImageJ® application
and distinguish CNTs from the contrasting polymer back-
ground, through appropriate digital filtering. The use of

Table 2. The d-metric for the images in Figure 2 indicates
a quantification of the degree/uniformity of dispersion.

〈d(Uniform||Pattern)〉
〈d(Uniform||a)〉 = 0.021(0.001)
〈d(Uniform||b)〉 = 0.066(0.001)
〈d(Uniform||c)〉 = 0.153(0.003)
〈d(Uniform||d)〉 = 1.354(0.007)

Note: The numbers in bold indicate the d-metric values, the
standard deviation from 10 measurements is indicated in the
parenthesis.

more sophisticated edge-detection subroutines may also
be used to distinguish roughness from the nanostructures.
We used such schemes and found that our algorithm was
insensitive to the roughness using the 150 pixel value
threshold mentioned earlier.

Table 1 shows the d(Image||HEX) metric compar-
ing each image in Figure 1 to a standard hexagonal
pattern. Table 1 then shows the d-metric could be a
quantitative measure of the extent of dispersion, yielding
progressively larger values for images that exhibit greater
clustering/poor dispersion and deviating more from the
chosen hexagonal lattice standard. The numerical val-
ues are indicative of the number of bits representing the
difference/distance between the given and the standard
distribution.[27]

We also compared the utility of the d(P||Q) metric
with other results from the literature (Figure 2—taken
from [25] and Figure 3—taken from [22]). In the for-
mer paper, the importance of reducing particle size to
increase the degree of matrix/polymer reinforcement
was discussed.[30] We analyzed the micrographs indicat-
ing the nanoparticle dispersions in Figure 2, taken from
the paper by Khare and Burris,[25] using our d-metric
approach. While the general procedure was discussed ear-
lier in the section, through (A)–(E), we outline the specific
methodology. For example, in Figure 2(a), subsequent to
the assignment of pixel values, i.e. 0 (black) and 255
(white), multiple quadrats each of size 50 nm square
(corresponding to twice the length scale of the dots)
was superimposed on and covered the image. The choice
of 50 nm was dictated by reproducible dispersion met-
ric results in addition to a reasonable computation time,
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Figure 2. Our proposed d-metric can be used to analyze the dispersion of nanoparticles, as well and indicates steadily decreasing
uniformity from (a) to (d)—Table 2. (Image taken from the paper by Khare and Burris [25].)

per (D) and (E) in the general procedure. The feature
distribution probabilities, (fp)—see Equation (1), related
to finding the specific feature/dots within the ith quadrat,
were determined through using the area ai (in units of
pixels) of the feature within the ith quadrat of area Ai(=
50 nm × 50 nm = 2500 nm2) through Equation (4). The
H (P) was obtained from Equation (1). Concomitantly,
H (Q), with Q as a hexagonal distribution was com-
puted (using a 50 nm quadrat size). The d-metric was
estimated from Equations (2) and (3). Ten measure-
ments of d(P||Q), with respect to the HEX pattern, were
averaged for any particular image/pattern under test to
estimate the population average and lower the standard
error estimate. In the other micrographs—Figure 2(b)–
(d), an identical method to that discussed above was
again used to obtain the respective d-metric values. The
obtained results are indicated in Table 2. The comparison
is now to a uniform distribution, with an implicit assump-
tion that this is the desired distribution. The steadily
increasing d-metric values from the top to the bottom, in
the order (a) < (b) < (c) < (d), are in accordance with

the easily observed diminished uniformity of dispersion
and indicate a quantifiable measure. It is interesting to
note, from Table 2 that 〈d(Uniform||a〉 = 0.021 and not
zero. The d-metric value would exactly be zero only
if all of the 10,000 randomly positioned quadrats (see
the beginning of Section 3, in our paper) happen to
encompass/circumscribe an equal number of particles
(/dark pixels representing the particles). In more detail, in
Figure 2(a), some randomly placed quadrats may super-
impose over the gaps between the particles while other
randomly positioned quadrats superimpose over the par-
ticle pixels. Consequently, the number of particle pixels
circumscribed by each quadrat will not always be the
same and accounts for d(Uniform||a) �= 0.

In yet another study taken from the literature,
the dispersion of alumina nanoparticles in a polyethy-
lene terephthalate (PET) polymer matrix was investi-
gated [22] through sample cross-sections taken from the
composite (as given in Figure 3). The authors’ analy-
sis of the degree of dispersion was considered inade-
quate, as there was no obvious discrimination between
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Figure 3. Another example of the application of the d-metric to the dispersion of alumina nanoparticles in PET polymer through
the analysis of a TEM image from the literature (Image taken from the paper by Kim et al. [22]). The non-uniformity of dispersion
increases from A1 to D1 and A2 to D2. The dispersion metric results are presented in Table 3.

single nanoparticles vs. an agglomeration of contiguous
nanoparticles and in addition, no comparison was made
to a standard/preferred pattern. We then applied our
d-metric-based approach to Figure 3, with the results

indicated in Table 3. The comparison is again to a hexago-
nal pattern distribution. The steadily increasing d-metric
values from the top to the bottom, for both columns,
now indicate definitive and well-founded values for the

Table 3. The d-metric for the images in Figure 3 indicates a quantification
of the degree/uniformity of dispersion.

〈d(HEX||Pattern)〉 〈d(HEX||Pattern)〉
〈d(HEX||A-1)〉 = 0.293(0.002) 〈d(HEX||A-2)〉 = 0.306(0.001)
〈d(HEX||B-1)〉 = 0.468(0.002) 〈d(HEX||B-2)〉 = 0.322(0.001)
〈d(HEX||C-1)〉 = 0.710(0.005) 〈d(HEX||C-2)〉 = 0.630(0.002)
〈d(HEX||D-1)〉 = 0.717(0.002) 〈d(HEX||D-2)〉 = 1.282(0.004)

Note: The numbers in bold indicate the d-metric values, the standard
deviation from 10 measurements is indicated in the parenthesis.
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degree of dispersion. While it may initially be surprising
to note that the similar values of the d-metric values for
Figure C-1 and Figure D-1, one way of rationalizing the
values is that the large gaps between particles in the for-
mer are as far (in terms of the average relative entropy
or distance) from pattern HEX as the large agglomerated
clusters in the latter figure.

Our methodology may also be adapted for three-
dimensional images. Cross-sections of two-dimensional
section scans at varying depths can be combined into
a collage and our algorithm applied without modifica-
tion. Alternatively, each cross-section can be evaluated
individually and the d-metric dispersions evaluated at
increasing cross-sectional depths. Such an evaluation can
be easily accomplished, for example, by plotting the
d-metric on statistical control charts.[39] The algorithm
also can be adapted to three-dimensional imaging tech-
niques through replacing quadrats with cuboids and area
fractions with volume fractions.

4. Conclusions We have shown conclusively that the
d-metric, based on Equation (3), can be used to satis-
factorily describe nanostructure dispersion in polymer
composites. The metric was applied to micrographs of
CNT-polymer composites, taken from our own studies as
well as from previous literature, and yields a measure of
the degree of uniformity relative to a preferred/standard
distribution. The proposed measure incorporates a firm
mathematical basis and has the advantage that the devi-
ation of a given distribution from a standard distribution
can be quantitatively gauged.

Supplementary Online Material. A more detailed
information on experiments is available at http://dx.doi.
org/10.1080/21663831.2014.886629.
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